Home (magnetism)

Pauli Spin Susceptibility and density of states near Fermi level

In many textbooks (e.g. Reference = N.W.Ashcroft, N.D. Mermin, Solid State Physics, Saunders College Publishing, USA, (1976) page 663.) one can find:

\chi = \mu_B^2\cdot g(E_F),

with \chi Pauli paramagnetic susceptibility due to conduction electrons, \mu_B = 9.27\cdot 10^{-24}\,{\rm A}{\rm m}^2 Bohr magneton and g(E_F) density of states near Fermi level, usually in number of states/eV per formula unit, where 1 {\rm eV} = 1.6\cdot 10^{-19}\,{\rm AVs}.

To make the above formula correctly written in SI units, \mu_0 = 4\,\pi 10^{-7}\,{ {\rm Vs}\over {\rm A m} } should be introduced:

\chi = \mu_0\, \mu_B^2\cdot g(E_F).

Usually susceptibility \chi is expressed per mol of the sample, not per formula unit. The above equation should be multiply with the Avogadro number N_A = 6\cdot 10^{23}.
Finally, in SI units:

\chi = 4.1\cdot 10^{-10} \cdot g(E_F) \cdot \left[ {{\rm states} \over {\rm eV} \cdot {\rm f.u.} }\right]^{-1} \cdot {{\rm m}^3\over {\rm mol}} ,

while in cgs units:

\chi = 3.2\cdot 10^{-5} \cdot g(E_F) \cdot \left[ {{\rm states} \over {\rm eV} \cdot {\rm f.u.} }\right]^{-1} \cdot {{\rm emu}\over {\rm mol}\cdot {\rm Oe}} .