
3.1 Magnetism at the atomic level 

We learned in Chapter 1 that magnetic fields are generated by electric currents. 

Given that there are no wires leading into or out of permanent magnets, you may 

well ask, “Where are the currents?” At the atomic level, the electric currents come 

from the motions of the electrons. From here quantum mechanics quickly gets 

esoteric, but some rudimentary understanding is helpful. In this chapter we will 

cover the bare minimum necessary to grasp the essentials of rock magnetism. 

In Chapter 1 we took the classical (pre-quantum mechanics) approach and 

suggested that the orbit of an electron about the nucleus could be considered a tiny 

electric current with a correspondingly tiny magnetic moment. But quantum 

physics tells us that this “planetary” view of the atom cannot be true. An electron 

zipping around a nucleus would generate radio waves, losing energy and eventually 

would crash into the nucleus. 

 

  

Figure 3.1: Plot of radial distribution and “dot-density” for the 1s electron shell. 
 

 

Apparently, this does not happen, so the classical approach is fatally flawed and we 

must turn to quantum mechanics. 

In quantum mechanics, electronic motion is stabilized by the fact that electrons can 

only have certain energy states; they are quantized. The energy of a given electron 

can be described in terms of solutions, Ψ, to something called Schrödinger’s wave 

equation. The function Ψ(r,θ,ϕ) gives the probability of finding an electron at a 

given position. [Remember from Chapter 2 that r,θ,ϕ are the three spherical 

coordinates.] It depend on three special quantum numbers (n,l,m): 
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(3.1) 

The number n is the so-called “principal” quantum number. The Rn
l(r) are functions 

specific to the element in question and the energy state of the electron n. It is 

evaluated at an effective radius r in atomic units. The Y l
m are a fully normalized 

complex representation of the spherical harmonics introduced in Section 2.2. For 

each level n, the number l ranges from 0 to n-1 and m from l backwards to -l. 

The lowest energy of the quantum wave equations is found by setting n equal to 

unity and both l and m to zero. Under these conditions, the solution to the wave 

equation is given by: 

 

 

(3.2) 

where Z is the atomic number and ρ is 2Zr∕n. Note that at this energy level, there is 

no dependence of Y on ϕ or θ. Substituting these two equations into 

Equation 3.1 gives the probability density Ψ for an electron as a function of radius 

of r. This is sketched as the line in Figure 3.1. Another representation of the same 

idea is shown in the inset, whereby the density of dots at a given radius reflects the 

probability distribution shown by the solid curve. The highest dot density is found 

at a radius of about one atomic unit, tapering off the farther away from the center of 

the atom. Because there is no dependence on θ or ϕthe probability distribution is a 

spherical shell. All the l,m = 0 shells are spherical and are often referred to as the 

1s, 2s, 3s shells, where the numbers are the energy levels n. A surface with equal 

probability is a sphere and example of one such shell is shown in Figure 3.2a. 

For l = 1, m will have values of -1, 0 and 1 and the Y l
m(ϕ,θ)s are given by: 

 
Shells with l = 1 depend not only on radial distance but also on the angles ϕ and θ, 

so they are not spheres, but more complicated shapes. A surface of equal 

probability for one such shell (the m = 1 shell) is shown in Figure 3.2b. Shells 

with l = 1 are called the “p” shells. 

As might be expected, the shells for l = 2 are even more complicated that for l = 1. 

These shells are called “d” shells and two examples are shown in Figure 3.2c and d. 
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Figure 3.2: 

Examples of surfaces of equal probability of the first three shells (l = 1,2,3). 

Surfaces created with Orbital Viewer. 
 

 

Returning to the tiny circuit idea, somehow the motion of the electrons in their 

shells acts like an electronic circuit and creates a magnetic moment. In quantum 

mechanics, the angular momentum vector of the electron L is quantized, for 

example as integer multiples of ℏ, the “reduced” Planck’s constant 

(or h _ 2π where h = 6.63 x 10-34 Js). The magnetic moment arising from the orbital 

angular momentum is given by: 

 
where μe is the mass of an electron (9.11 x 10-31 kg), qe= -1.69 x 10-19C. The 

smallest value of L is ℏ so the fundamental unit of magnetic moment arising from 

the oribit of electrons is given by: 

 

(3.3) 

This is known as the Bohr magneton. 

 



  

Figure 3.3: Electronic structure of elements from Na to Zn. 
 

 

So far we have not mentioned one last quantum number, s. This is the “spin” of the 

electron and has a value of ±1 2. The spin itself produces a magnetic moment 

which is given by 2smb, hence is numerically identical to that produced by the 

orbit. 

Atoms have the same number of electrons as protons in order to preserve charge 

balance. Hydrogen has but one lonely electron which in its lowest energy state sits 

in the 1s electronic shell. Helium has a happy pair, so where does the second 

electron go? To fill in their electronic shells, atoms follow three rules: 

1. No two electrons may have the same set of quantum numbers. This is Pauli’s 

exclusion principle. Because spin (s) can be ±1 2, two electrons fit in one 

orbital. When a single electron occupies a given orbital, it is called 

“unpaired” and has a magnetic moment of 1 mb. 

2. Orbitals are filled in order of increasing energy. The energy state of a given 

orbital is dependent on the context (whether the atom is bound to other 

atoms or not), but in general they will be filled according to the scheme 

shown in Figure 3.3. 

3. Electrons are added so that the spins remain as parallel as possible (Hund’s 

rule). Notice in Figure 3.3 that when filling the third energy level (n = 3), all 

five d shells are filled with one kind of spin (say, all up, or +1 2), before the 

electrons begin to pair up. Also, because the energies of the shells change 

somewhat according to the context they are in, the 4s shell will actually give 

up an electron to a dshell, before the d shells begin to pair up. Hund’s rule 

gives the atoms with some d shell electrons (the so-called “transition 
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elements”, e.g., Cr, Mn, Fe, Co and Ni) the possibility of large magnetic 

moments. 

Each unpaired spin has a moment of one Bohr magneton mb. The elements with the 

most unpaired spins are the transition elements which are responsible for most of 

the paramagnetic behavior observed in rocks. For example, in Figure 3.3 we see 

that Mn has a structure of: (1s22s22p63s23p6)3d54s2, hence has five unpaired spins 

and a net moment of 5 mb. Fe has a structure of (1s22s22p63s23p6)3d64s2 with a net 

moment of 4 mb, In minerals, the transition elements are in a variety of oxidation 

states. Fe commonly occurs as Fe2+ and Fe3+. When losing electrons to form ions, 

transition metals lose the 4s electrons first, so we have for example, Fe3+ with a 

structure of (1s22s22p63s23p6)3d5, or 5 mb. Similarly Fe2+ has 4 mb and Ti4+ has no 

unpaired spins. Iron is the main magnetic species in geological materials, but 

Mn2+ (5 mb) and Cr3+ (3 mb) occur in trace amounts. 

 

http://magician.ucsd.edu/essentials/WebBookse16.html#x21-240063

